79 research outputs found

    Socially-Aware Distributed Hash Tables for Decentralized Online Social Networks

    Full text link
    Many decentralized online social networks (DOSNs) have been proposed due to an increase in awareness related to privacy and scalability issues in centralized social networks. Such decentralized networks transfer processing and storage functionalities from the service providers towards the end users. DOSNs require individualistic implementation for services, (i.e., search, information dissemination, storage, and publish/subscribe). However, many of these services mostly perform social queries, where OSN users are interested in accessing information of their friends. In our work, we design a socially-aware distributed hash table (DHTs) for efficient implementation of DOSNs. In particular, we propose a gossip-based algorithm to place users in a DHT, while maximizing the social awareness among them. Through a set of experiments, we show that our approach reduces the lookup latency by almost 30% and improves the reliability of the communication by nearly 10% via trusted contacts.Comment: 10 pages, p2p 2015 conferenc

    Vitis: A Gossip-based Hybrid Overlay for Internet-scale Publish/Subscribe

    Get PDF
    Peer-to-peer overlay networks are attractive solutions for building Internet-scale publish/subscribe systems. However, scalability comes with a cost: a message published on a certain topic often needs to traverse a large number of uninterested (unsubscribed) nodes before reaching all its subscribers. This might sharply increase resource consumption for such relay nodes (in terms of bandwidth transmission cost, CPU, etc) and could ultimately lead to rapid deterioration of the system’s performance once the relay nodes start dropping the messages or choose to permanently abandon the system. In this paper, we introduce Vitis, a gossip-based publish/subscribe system that significantly decreases the number of relay messages, and scales to an unbounded number of nodes and topics. This is achieved by the novel approach of enabling rendezvous routing on unstructured overlays. We construct a hybrid system by injecting structure into an otherwise unstructured network. The resulting structure resembles a navigable small-world network, which spans along clusters of nodes that have similar subscriptions. The properties of such an overlay make it an ideal platform for efficient data dissemination in large-scale systems. We perform extensive simulations and evaluate Vitis by comparing its performance against two base-line publish/subscribe systems: one that is oblivious to node subscriptions, and another that exploits the subscription similarities. Our measurements show that Vitis significantly outperforms the base-line solutions on various subscription and churn scenarios, from both synthetic models and real-world traces

    Semi-Supervised Multiple Disambiguation

    Full text link
    Determining the true entity behind an ambiguousword is an NP-Hard problem known as Disambiguation. Previoussolutions often disambiguate a single ambiguous mention acrossmultiple documents. They assume each document contains onlya single ambiguous word and a rich set of unambiguous contextwords. However, nowadays we require fast disambiguation ofshort texts (like news feeds, reviews or Tweets) with few contextwords and multiple ambiguous words. In this research we focuson Multiple Disambiguation (MD) in contrast to Single Disambiguation(SD). Our solution is inspired by a recent algorithm developed for SD. The algorithm categorizes documents by first,transferring them into a graph and then, clustering the graphbased on its topological structure. We changed the graph-baseddocument-modeling of the algorithm, to account for MD. Also,we added a new parameter that controls the resolution of theclustering. Then, we used a supervised sampling approach formerging the clusters when appropriate. Our algorithm, comparedwith the original model, achieved 10% higher quality in termsof F1-Score using only 4% sampling from the dataset.QC 20160407</p

    Fully Dynamic Algorithm for Top-kk Densest Subgraphs

    Full text link
    Given a large graph, the densest-subgraph problem asks to find a subgraph with maximum average degree. When considering the top-kk version of this problem, a na\"ive solution is to iteratively find the densest subgraph and remove it in each iteration. However, such a solution is impractical due to high processing cost. The problem is further complicated when dealing with dynamic graphs, since adding or removing an edge requires re-running the algorithm. In this paper, we study the top-kk densest-subgraph problem in the sliding-window model and propose an efficient fully-dynamic algorithm. The input of our algorithm consists of an edge stream, and the goal is to find the node-disjoint subgraphs that maximize the sum of their densities. In contrast to existing state-of-the-art solutions that require iterating over the entire graph upon any update, our algorithm profits from the observation that updates only affect a limited region of the graph. Therefore, the top-kk densest subgraphs are maintained by only applying local updates. We provide a theoretical analysis of the proposed algorithm and show empirically that the algorithm often generates denser subgraphs than state-of-the-art competitors. Experiments show an improvement in efficiency of up to five orders of magnitude compared to state-of-the-art solutions.Comment: 10 pages, 8 figures, accepted at CIKM 201

    The essence of P2P: A reference architecture for overlay networks

    Get PDF
    The success of the P2P idea has created a huge diversity of approaches, among which overlay networks, for example, Gnutella, Kazaa, Chord, Pastry, Tapestry, P-Grid, or DKS, have received specific attention from both developers and researchers. A wide variety of algorithms, data structures, and architectures have been proposed. The terminologies and abstractions used, however, have become quite inconsistent since the P2P paradigm has attracted people from many different communities, e.g., networking, databases, distributed systems, graph theory, complexity theory, biology, etc. In this paper we propose a reference model for overlay networks which is capable of modeling different approaches in this domain in a generic manner. It is intended to allow researchers and users to assess the properties of concrete systems, to establish a common vocabulary for scientific discussion, to facilitate the qualitative comparison of the systems, and to serve as the basis for defining a standardized API to make overlay networks interoperable

    Gossip-based service monitoring platform for wireless edge cloud computing

    Get PDF
    Edge cloud computing proposes to support shared services, by using the infrastructure at the network's edge. An important problem is the monitoring and management of services across the edge environment. Therefore, dissemination and gathering of data is not straightforward, differing from the classic cloud infrastructure. In this paper, we consider the environment of community networks for edge cloud computing, in which the monitoring of cloud services is required. We propose a monitoring platform to collect near real-time data about the services offered in the community network using a gossip-enabled network. We analyze and apply this gossip-enabled network to perform service discovery and information sharing, enabling data dissemination among the community. We implemented our solution as a prototype and used it for collecting service monitoring data from the real operational community network cloud, as a feasible deployment of our solution. By means of emulation and simulation we analyze in different scenarios, the behavior of the gossip overlay solution, and obtain average results regarding information propagation and consistency needs, i.e. in high latency situations, data convergence occurs within minutes.Peer ReviewedPostprint (author's final draft
    • 

    corecore